Multi-Symplectic Geometry and Explicit Multi-symplectic Method for Solving Zhiber-Shabat Equation
نویسندگان
چکیده
In the paper, we derive a multi-symplectic Fourier pseudospectral method for Zhiber-Shabat equation. The Zhiber-Shabat equation, which describes many important physical phenomena, has been investigated widely in last several decades. The multi-symplectic geometry and multi-symplectic Fourier pseudospectral method for the Zhiber-Shabat equation is presented. The numerical experiments are given, showing that the multi-symplectic Fourier pseudospectral method is an efficient algorithm with excellent long-time numerical behaviors.
منابع مشابه
A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملExplicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations
In this paper, we study the integration of Hamiltonian wave equations whose solutions have oscillatory behaviors in time and/or space. We are mainly concerned with the research for multi-symplectic extended Runge-Kutta-Nyström (ERKN) discretizations and the corresponding discrete conservation laws. We first show that the discretizations to the Hamiltonian wave equations using two symplectic ERK...
متن کاملSplit-Step Multi-Symplectic Method for Nonlinear Schrödinger Equation
Multi-symplectic methods have recently been considered as a generalization of symplectic ODE methods to the case of Hamiltonian PDEs. The symplectic of Hamiltonian systems is well known, but for Partial Differential Equation (PDEs) this is a global property. In addition, many PDEs can be written as Multisymplectic systems, in which each independent variable has a distinct symplectic structure. ...
متن کاملMulti-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations
A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...
متن کاملMulti-symplectic Fourier Pseudospectral Method for the Nonlinear Schrödinger Equation
Abstract. Bridges and Reich suggested the idea of multi-symplectic spectral discretization on Fourier space [4]. Based on their theory, we investigate the multi-symplectic Fourier pseudospectral discretization of the nonlinear Schrödinger equation (NLS) on real space. We show that the multi-symplectic semi-discretization of the nonlinear Schrödinger equation with periodic boundary conditions ha...
متن کامل